Influence of the learning method in the performance of feedforward neural networks when the activity of neurons is modified

نویسندگان

  • M. Konomi
  • Sacha Gomez-Monivas
چکیده

A method that allows us to give a different treatment to any neuron inside feedforward neural networks is presented. The algorithm has been implemented with two very different learning methods: a standard Back-propagation (BP) procedure and an evolutionary algorithm. First, we have demonstrated that the EA training method converges faster and gives more accurate results than BP. Then we have made a full analysis of the effects of turning off different combinations of neurons after the training phase. We demonstrate that EA is much more robust than BP for all the cases under study. Even in the case when two hidden neurons are lost, EA training is still able to give good average results. This difference implies that we must be very careful when pruning or redundancy effects are being studied since the network performance when losing neurons strongly depends on the training method. Moreover, the influence of the individual inputs will also depend on the training algorithm. Since EA keeps a good classification performance when units are lost, this method could be a good way to simulate biological learning systems since they must be robust against deficient neuron performance. Although biological systems are much more complex than the simulations shown in this article, we propose that a smart training strategy such as the one shown here could be considered as a first protection against the losing of a certain number of neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه

In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...

متن کامل

Using the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting

The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models.  Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

Predict the success of students in math’s course in final exams in Arak city with neural networks

One very significant issues in most educational systems, the question is educational achievement levels of students in exams. The educational system is one of the most important indicators of education performance and evaluation of teaching and the learning is the fact that the performance of the system output in each year. The method of the research is descriptive-survey. The research communit...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1404.5144  شماره 

صفحات  -

تاریخ انتشار 2014